Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Engine Operating Parameters on Space- and Species-Resolved Measurements of Engine-Out Emissions from a Single-Cylinder Spark Ignition Engine

2019-04-02
2019-01-0745
The development and validation of detailed simulation models of in-cylinder combustion, emission formation mechanisms and reaction kinetics in the exhaust system are of crucial importance for the design of future low-emission powertrain concepts. To investigate emission formation mechanisms on one side and to create a solid basis for the validation of simulation methodologies (e.g. 3D-CFD, multi-dimensional in-cylinder models, etc.) on the other side, specific detailed measurements in the exhaust system are required. In particular, the hydrocarbon (HC) emissions are difficult to be investigated in simulation and experimentally, due to their complex composition and their post-oxidation in the exhaust system. In this work, different emission measurement devices were used to track the emission level and composition at different distances from the cylinder along the exhaust manifold, from the exhaust valve onwards.
Technical Paper

Experimental Investigations on the Influence of Valve Timing and Multi-Pulse Injection on GCAI Combustion

2019-04-02
2019-01-0967
Gasoline Controlled Auto-Ignition (GCAI) combustion, which can be categorized under Homogeneous Charge Compression Ignition (HCCI), is a low-temperature combustion process with promising benefits such as ultra-low cylinder-out NOx emissions and reduced brake-specific fuel consumption, which are the critical parameters in any modern engine. Since this technology is based on uncontrolled auto-ignition of a premixed charge, it is very sensitive to any change in boundary conditions during engine operation. Adopting real time valve timing and fuel-injection strategies can enable improved control over GCAI combustion. This work discusses the outcome of collaborative experimental research by the partnering institutes in this direction. Experiments were performed in a single cylinder GCAI engine with variable valve timing and Gasoline Direct Injection (GDI) at constant indicated mean effective pressure (IMEP). In the first phase intake and exhaust valve timing sweeps were investigated.
Technical Paper

Advanced Functional Pulse Testing of a Two-Stage VCR-System

2019-04-02
2019-01-1195
Two-stage variable compression ratio (VCR) systems for spark ignited engines offer a CO2 reduction potential of approx. 5%. Due to their modularity, connecting rod based VCR-systems can be integrated into existing engine assembly systems, where engines can be built in parallel with or without such a system, depending on performance and market requirements. In order to comply with the new RDE emission standards with high specific power engine variants, VCR systems enable high load engine operation without fuel enrichment. The interactions between the hydraulic-, mechanical - and oil supply systems of a VCR-system with variable connecting rod length are complex and require a well-developed and adapted layout of all subsystems. This demands the use of tailored measurement and simulation tools during the development and application phases. In this context, Advanced Functional Pulse Testing enables single-parameter analyses of VCR con rods.
Technical Paper

Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability

2019-04-02
2019-01-0195
This article discusses highly flexible and accurate physics-based mean value modeling (MVM) for internal combustion engines and its wide applicability towards virtual vehicle calibration. The requirement to fulfill the challenging Real Driving Emissions (RDE) standards has significantly increased the demand for precise engine models, especially models regarding pollutant emissions and fuel economy. This has led to a large increase in effort required for precise engine modeling and robust model calibration. Two best-practice engine modeling approaches will be introduced here to satisfy these requirements. These are the exclusive MVM approach, and a combination of MVM and a Design of Experiments (DOE) model for heterogeneous multi-domain engine systems.
Technical Paper

UV-Absorption Measurements by Spontaneous Raman Scattering in Low-Sooting Diesel-Like Jets

2018-10-11
2018-01-5042
UV-absorption measurements are sparse in diesel(-like) combustion, particularly close to the premixed burn. Thus, such measurements are conducted in diesel-like jets in a high-pressure vessel in this work, using 1D spontaneous Raman scattering (SRS) from N2. Stokes (~263 nm) and anti-Stokes (~235 nm) SRS induced by a krypton fluoride excimer (KrF*) laser (~248 nm) is exploited. Anti-Stokes SRS can be directly used for attenuation correction of laser-induced fluorescence (LIF) from NO at ~236 nm. Results show the importance of attenuation correction, although the jets are largely non-sooting. To identify absorbers, effects of SRS wavelength, measurement time in the injection event, location in the flame, jet width (JW), temperature, CO concentration, and injection pressure are considered. Particularly strong attenuation observed around the time of second-stage ignition appears to be primarily caused by combustion intermediates such as partially oxidized fuel.
Technical Paper

Characterization of Oxygenated-Fuel Combustion by Quantitative Multiscalar SRS/LIF Measurements in a Diesel-Like Jet

2018-09-28
2018-01-5037
Due to experimental challenges, combustion of diesel-like jets has rarely been characterized by laser-based quantitative multiscalar measurements. In this work, recently developed laser diagnostics for combustion temperature and the concentrations of CO, O2, and NO are applied to a diesel-like jet, using a highly oxygenated fuel. The diagnostic is based on spontaneous Raman scattering (SRS) and laser-induced fluorescence (LIF) methods. Line imaging yields multiscalar profiles across the jet cross section. Measurements turn out to be particularly accurate, because near-stoichiometric combustion occurs in the central region of the jet. Thereby, experimental cross-influences by light attenuation and interfering emissions are greatly reduced compared to the combustion of conventional, sooting diesel fuel jets. This is achieved by fuel oxygenation and enhanced premixing.
Technical Paper

Investigation of Oil Sources in the Combustion Chamber of Direct Injection Gasoline Engines

2018-09-10
2018-01-1811
To reduce hydrocarbon and particle emissions as well as irregular combustion phenomena, the identification and quantification of possible oil sources in the combustion chamber of the direct injection gasoline engine are of main interest. The aim of this research activity is to fundamentally investigate the formation of locally increased lubricating oil concentration in the combustion chamber. For this purpose, the oil sources are considered separately from each other and divided into two groups - piston/compression ring and lubricating film on the liner. The associated oil emissions and their influence on the engine combustion process are the core of the investigations.
Technical Paper

Comparing Large Eddy Simulation of a Reacting Fuel Spray with Measured Quantitative Flame Parameters

2018-09-10
2018-01-1720
In order to reduce engine out CO2 emissions, it is a main subject to find new alternative fuels from renewable sources. For identifying the specification of an optimized fuel for engine combustion, it is essential to understand the details of combustion and pollutant formation. For obtaining a better understanding of the flame behavior, dynamic structure large eddy simulations are a method of choice. In the investigation presented in this paper, an n-heptane spray flame is simulated under engine relevant conditions starting at a pressure of 50 bar and a temperature of 800 K. Measurements are conducted at a high-pressure vessel with the same conditions. Liquid penetration length is measured with Mie-Scatterlight, gaseous penetration length with Shadowgraphy and lift-off length as well as ignition delay with OH*-Radiation. In addition to these global high-speed measurement techniques, detailed spectroscopic laser measurements are conducted at the n-heptane flame.
Journal Article

Fuel Cell System Development: A Strong Influence on FCEV Performance

2018-04-03
2018-01-1305
In this article, the development challenges of a fuel cell system are explained using the example of the BREEZE! fuel cell range extender (FC-REX) applied in an FEV Liiona. The FEV Liiona is a battery electric vehicle based on a Fiat 500 developed by FEV. The BREEZE! system is the first applied 30 kW low temperature polymer electrolyte membrane (LT PEM) fuel cell system in the subcompact vehicle class. Due to the highly integrated system approach and dry cathode operation, a compact design of the range extender module with a system power density of 0.45 kW/l can be achieved so that the vehicle interior including trunk remains completely usable. System development for fuel cells significantly influences performance, efficiency, package, durability, and required maintenance effort of a fuel cell electric powertrain. In order to ensure safe and reliable operation, the fuel cell system has to be supplied with sufficient amounts of air, hydrogen, and coolant flows.
Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

2018-04-03
2018-01-0163
Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Journal Article

Improving Engine Efficiency and Emission Reduction Potential of HVO by Fuel-Specific Engine Calibration in Modern Passenger Car Diesel Applications

2017-10-08
2017-01-2295
The optimization study presented herein is aimed to minimize the fuel consumption and engine-out emissions using commercially available EN15940 compatible HVO (Hydrogenated Vegetable Oil) fuel. The investigations were carried out on FEV’s 3rd generation HECS (High Efficiency Combustion System) multi-cylinder engine (1.6L, 4 Cylinder, Euro 6). Using a global DOE approach, the effects of calibration parameters on efficiency and emissions were obtained and analyzed. This was followed by a global optimization procedure to obtain a dedicated calibration for HVO. The study was aiming for efficiency improvement and it was found that at lower loads, higher fractions of low pressure EGR in combination with lower fuel injection pressures were favorable. At higher loads, a combustion center advancement, increase of injection pressure and reduced pilot injection quantities were possible without exceeding the noise and NOx levels of the baseline Diesel.
Technical Paper

Effects of Biofuels on the Mixture Formation and Ignition Process in Diesel-Like Jets

2017-10-08
2017-01-2332
In order to reduce engine out CO2 emissions it is a main subject to find new alternative fuels out of renewable sources. For this paper, several fuels were selected which can be produced out of biomass or with hydrogen which is generated directly via electrolysis with electricity from renewable sources. All fuels are compared to conventional diesel fuel and two diesel surrogates. It is well known that there can be a large effect of fuel properties on mixture formation and combustion, which may result in a completely different engine performance compared to the operation with conventional diesel fuels. Mixture formation and ignition behavior can also largely affect the pollutant formation. The knowledge of the combustion behavior is also important to design new engine geometries or implement new calibrations for an existing engine. The fuel properties of the investigated fuels comprise a large range, for example in case of the derived cetane number, from below 30 up to 100.
Journal Article

Assessment of the Full Thermodynamic Potential of C8-Oxygenates for Clean Diesel Combustion

2017-09-04
2017-24-0118
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB) at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for combustion in a Diesel engine. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines (SCE). For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load (2400 min-1, 14.8 bar IMEP), the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
Journal Article

Laser-Induced Incandescence Measurements of Tailor-Made Fuels in an Optical Single-Cylinder Diesel Engine

2017-03-28
2017-01-0711
The influence of two oxygenated tailor-made fuels on soot formation and oxidation in an optical single cylinder research diesel engine has been studied. For the investigation a planar laser-induced incandescence (PLII) measurement technique was applied to the engine in order to detect and evaluate the planar soot distribution for the two bio fuels within a laser light sheet. Furthermore the OH* chemiluminescence and broad band soot luminosity was visualized by high speed imaging to compare the ignition and combustion behavior of tested fuels: Two C8 oxygenates, di-n-butylether (DNBE) and 1-octanol. Both fuels have the same molecular formula but differ in their molecular structure. DNBE ignites fast and burns mostly diffusive while 1-octanol has a low cetane number and therefore it has a longer ignition delay but a more homogeneous mixture at time of ignition. The two bio fuels were finally compared to conventional diesel fuel.
Journal Article

Future Specification of Automotive LPG Fuels for Modern Turbocharged DI SI Engines with Today’s High Pressure Fuel Pumps

2016-10-17
2016-01-2255
Liquefied Petroleum Gas direct injection (LPG DI) is believed to be the key enabler for the adaption of modern downsized gasoline engines to the usage of LPG, since LPG DI avoids the significant low end torque drop, which goes along with the application of conventional LPG port fuel injection systems to downsized gasoline DI engines, and provides higher combustion efficiencies. However, especially the high vapor pressure of C3 hydrocarbons can result in hot fuel handling issues as evaporation or even in reaching the supercritical state of LPG upstream or inside the high pressure pump (HPP). This is particularly critical under hot soak conditions. As a result of a rapid fuel density drop close to the supercritical point, the HPP is not able to keep the rail pressure constant and the engine stalls.
Technical Paper

A Study on In-Cycle Combustion Control for Gasoline Controlled Autoignition

2016-04-05
2016-01-0754
Gasoline Controlled Auto Ignition offers a high CO2 emission reduction potential, which is comparable to state-of-the-art, lean stratified operated gasoline engines. Contrary to the latter, GCAI low temperature combustion avoids NOX emissions, thereby trying to avoid extensive exhaust aftertreatment. The challenges remain in a restricted operation range due to combustion instabilities and a high sensitivity towards changing boundary conditions like ambient temperature, intake pressure or fuel properties. Once combustion shows instability, cyclic fluctuations are observed. These appear to have near-chaotic behavior but are characterized by a superposition of clearly deterministic and stochastic effects. Previous works show that the fluctuations can be predicted precisely when taking cycle-tocycle correlations into account. This work extends current approaches by focusing on additional dependencies within one single combustion cycle.
Journal Article

Cylinder Pressure Based Fuel Path Control for Non-Conventional Combustion Modes

2015-09-06
2015-24-2508
Model-based control strategies along with an adapted calibration process become more important in the overall vehicle development process. The main drivers for this development trend are increasing numbers of vehicle variants and more complex engine hardware, which is required to fulfill the more and more stringent emission legislation and fuel consumption norms. Upcoming fundamental changes in the homologation process with EU 6c, covering an extended range of different operational and ambient conditions, are suspected to intensify this trend. One main reason for the increased calibration effort is the use of various complex aftertreatment technologies amongst different vehicle applications, requiring numerous combustion modes. The different combustion modes range from heating strategies for active Diesel Particulate Filter (DPF) regeneration or early SCR light-off and rich combustion modes to purge the NOx storage catalyst (NSC) up to partially premixed combustion modes.
Technical Paper

Optical Investigation of Biofuel Effects on NO and PAH Formation in Diesel-Like Jets

2015-09-06
2015-24-2485
In order to reduce engine out CO2 emissions it is a main subject to find new alternative fuels out of renewable sources. For this reason in this paper a blend out of 1-octanol and di-n-butylether and pure di-n-butylether are investigated in comparison to n-heptane as diesel-like fuel. The alternative fuels have a different combustion behavior particularly concerning important combustion parameters like ignition delay and mixture formation. Especially the formation of pollutants like nitrogen oxides in the combustion of alternative fuels is of global interest. The knowledge of the combustion behavior is important to design new engine geometries or implement a new calibration of the engine. In previous measurements in a single cylinder engine it was found out that both alternative fuels form nearly no soot emissions. For this reason now NOx is investigated optically to avoid the traditional soot NOx trade-off in diesel combustion.
Technical Paper

Experimental Investigation of a RCCI Combustion Concept with In-Cylinder Blending of Gasoline and Diesel in a Light Duty Engine

2015-09-06
2015-24-2452
Within this study a dual-fuel concept was experimentally investigated. The utilized fuels were conventional EN228 RON95E10 and EN590 Diesel B7 pump fuels. The engine was a single cylinder Diesel research engine for passenger car application. Except for the installation of the port fuel injection valve, the engine was not modified. The investigated engine load range covered low part load operation of IMEP = 4.3 bar up to IMEP = 14.8 bar at different engine speeds. Investigations with Diesel pilot injection showed that the dual-fuel approach can significantly reduce the soot/NOx-trade-off, but typically increases the HC- and CO-emissions. At high engine load and gasoline mass fraction, the premixed gasoline/air self-ignited before Diesel fuel was injected. Reactivity Controlled Compression Ignition (RCCI) was subsequently investigated in a medium load point at IMEP = 6.8 bar.
Technical Paper

Internal and External Measures for Catalyst Light-Off Support

2015-09-06
2015-24-2501
Within a project of the Research Association for Combustion Engines e.V., different measures for rising the temperature of exhaust gas aftertreatment components of both a passenger car and an industrial/commercial vehicle engine were investigated on a test bench as well as in simulation. With the passenger car diesel engine and different catalyst configurations, the potential of internal and external heating measures was evaluated. The configuration consisting of a NOx storage catalyst (NSC) and a diesel particulate filter (DPF) illustrates the potential of an electrically heated NSC. The exhaust aftertreatment system consisting of a diesel oxidation catalyst (DOC) and a DPF shows in simulation how variable valve timing in combination with electric heated DOC can be used to increase the exhaust gas temperature and thus fulfill the EU6 emission limits.
X